B. Math. (Hons.) 2nd year Midsemestral Exam
 Rings and Modules
 21st February 2023
 Instructor - B. Sury
 Each Question carries 10 points

Q 1. Let F be a field. Prove that the groups $(F,+)$ and $(F \backslash\{0\}, \times)$ are not isomorphic.

OR

Q 1. Let R be a (possibly noncommutative) ring with unity with the property that whenever two elements a, b satisfy $a b=1$, we also have $b a=1$. Let $f, g \in R[X]$, such that $f g=1$ in $R[X]$. Prove that $g f=1$ as well.

Q 2.

(a) Let R be a (commutative) local ring with unity. Show that the only idempotents in R are 0 and 1 .
(b) Let R be a commutative ring with unity. If I, J are ideals satisfying $I+J=R$, prove that $I^{m}+J^{n}=R$ for all positive integers m, n.

OR

Q 2. If R is a commutative ring with unity, and $f=\sum_{i=0}^{n} a_{i} X^{i}$ is a unit, prove that a_{1}, \cdots, a_{n} are nilpotent.

Q 3. Let G be a non-trivial finite group. Let R be any commutative ring with unity. Prove that the group ring $R[G]$ has nontrivial zero divisors.

OR

Q 3. If $f: A \rightarrow B$ is a ring homomorphism, give examples of ideals J_{1}, J_{2} in B to show that the containment $\left(J_{1}: J_{2}\right)^{c} \subset J_{1}^{c}: J_{2}^{c}$ can be strict.

Q 4. Let R be a commutative ring with unity in which there are only finitely many nilpotent elements. Suppose $f(X)=\sum_{i=0}^{\infty} a_{i} X^{i} \in R[[X]]$ where each a_{i} is nilpotent. Prove that f is nilpotent.

OR

Q 4. If R is a commutative ring with unity, and I, J are ideals such that $I+J \neq R$, prove that the natural ring homomorphism $R \rightarrow R / I \times R / J ;$ $x \mapsto(x+I, x+J)$ is not surjective.

Q 5. Let R be a commutative ring with unity. For ideals I, J in R, prove that the sets $V(I):=\{P$ prime ideal: $P \supseteq I\}$ and $V(J):=\{P$ prime ideal: $P \supseteq J\}$ coincide if, and only if, $\sqrt{I}=\sqrt{J}$.

OR

Q 5. Let R be a (commutative) integral domain with quotient field F. For each prime ideal P, the localization R_{P} can be considered a subring of F containing R. Prove that the intersection of all $R_{\mathfrak{m}}$ as \mathfrak{m} runs over the maximal ideals of R, equals R.

Q 6. For any positive integers k, n, prove that $X_{1}^{n}+X_{2}^{n}+\cdots+X_{k}^{n}+3$ is an irreducible element of $\mathbb{Z}\left[X_{1}, \cdots, X_{k}\right]$. State precisely any of the results that you use without proof.

OR

Q 6. Prove that the polynomial $X^{20020}-10010 X^{2002}+110$ does not take the values ± 33 for any integer values of X.

Q 7. Does the equation $2.7=\sqrt{14} \cdot \sqrt{14}$ in the ring $R=\mathbb{Z}[\sqrt{14}]$ imply that R is not a UFD? Explain why or why not.

OR

Q 7. Determine all the integer solutions of the equation $x^{2}+2=y^{3}$. You may assume that $\mathbb{Z}[\sqrt{-2}]$ is a UFD.

